Title: | Companion Package for WSBIM1322 Course |
---|---|
Description: | Companion package for the WSBIM1322 course, distributing data and general documentation, and making course administration easier. |
Authors: | Laurent Gatto [aut, cre] , Julie Devis [ctb] |
Maintainer: | Laurent Gatto <[email protected]> |
License: | GPL-2 |
Version: | 0.3.2 |
Built: | 2024-10-30 05:36:07 UTC |
Source: | https://github.com/UCLouvain-CBIO/rWSBIM1322 |
The data stems from the 6th study of the Clinical Proteomic Technology Assessment for Cancer (CPTAC). The authors spiked the Sigma Universal Protein Standard mixture 1 (UPS1) containing 48 different human proteins in a protein background of 60 ng/microL Saccharomyces cerevisiae strain BY4741. Two different spike-in concentrations were used: 6A (0.25 fmol UPS1 proteins/microL) and 6B (0.74 fmol UPS1 proteins/microL). In this subset, we limited ourselves to the data of LTQ-Orbitrap W at site 56. The data were searched with MaxQuant version 1.5.2.8, and detailed search settings were described in Goeminne et al. (2016). Three replicates peptide quantitation data are available for each concentration.
cptac_se
cptac_se
An object of class SummarizedExperiment
with 4051 rows and 6 columns.
The data are available as SummarizedExperiment
objects.
See the proteomics tutorial from the Bioinformatics Summer School 2019 (https://lgatto.github.io/bioc-ms-prot/bss-lab.html) for scripts on how these data were processed.
library("SummarizedExperiment") data(cptac_se) cptac_se data(cptac_se_prot) cptac_se_prot
library("SummarizedExperiment") data(cptac_se) cptac_se data(cptac_se_prot) cptac_se_prot
This is a small toy example providing expression values for 5 genes and three samples from Olga Vitek. It is used to compare euclidean and correlation distances and the effect/importance of scaling.
g3
g3
An object of class matrix
(inherits from array
) with 3 rows and 5 columns.
data(g3) g3 matplot(t(g3), type = "b", xlab = "Samples", ylab = "Expression")
data(g3) g3 matplot(t(g3), type = "b", xlab = "Samples", ylab = "Expression")
This data is a copy of the iris
data, reframed for biomedical
course. It illustrates the expression of 4 genes, BRCA1, BRCA2,
TP53 and A1CF, in 150 patients, that have been categorised in 3
catégories, A, B and C.
giris
giris
An object of class data.frame
with 150 rows and 5 columns.
head(giris) pairs(giris, col = giris$GRADE) pca2 <- prcomp(giris2[, -5], scale = TRUE) factoextra::fviz_pca_ind(pca2, col.ind = giris2$GRADE)
head(giris) pairs(giris, col = giris$GRADE) pca2 <- prcomp(giris2[, -5], scale = TRUE) factoextra::fviz_pca_ind(pca2, col.ind = giris2$GRADE)
The is a subset of the full Hiiragi 2013 dataset from the
Hiiragi2013
package. The data describes cell-to-cell expression
variability followed by signal reinforcement progressively segregates
early mouse lineages.
data("hiiragi2013df1") data("hiiragi2013df2")
data("hiiragi2013df1") data("hiiragi2013df2")
The data originally come from the Hiiragi2013
Bioconductor
package. See inst/script/hiiragi2013.R
to see how they have
been converted.
Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages by Y. Ohnishi, W. Huber, A. Tsumura, M. Kang, P. Xenopoulos, K. Kurimoto, A. K. Oles, M. J. Arauzo-Bravo, M. Saitou, A.-K. Hadjantonakis and T. Hiiragi; Nature Cell Biology (2014) 16(1): 27-37. doi: 10.1038/ncb2881.
data(hiiragi2013df1) data(hiiragi2013df2)
data(hiiragi2013df1) data(hiiragi2013df2)
This is a small RNA-Seq data set, build from the data returned by
the rWSBIM1207::kem2.tsv()
function.
kem2_se
kem2_se
An object of class SummarizedExperiment
with 4774 rows and 16 columns.
library("SummarizedExperiment") data(kem2_se) assay(kem2_se) colData(kem2_se) rowData(kem2_se)
library("SummarizedExperiment") data(kem2_se) assay(kem2_se) colData(kem2_se) rowData(kem2_se)
Generate data
make_data(noma)
make_data(noma)
noma |
'character(1)' that can be coerced into a numeric |
A SummarizedExperimet
make_data("123")
make_data("123")
This data comes from the Modern Statistics for Modern Biology book and was
originally called mat1
from the mat1xcms.RData
file. It contains
quantitation data for 399 metabolites and 6 knock-out and 6 wild-type
samples.
metab1
metab1
An object of class matrix
(inherits from array
) with 399 rows and 12 columns.
data(metab1) dim(metab1) metab1[1:10, 1:3]
data(metab1) dim(metab1) metab1[1:10, 1:3]
Several SummarizedExperiment
datasets for the recap exercices in
the conclusion chapter of the course.
recapSE1
recapSE1
An object of class SummarizedExperiment
with 1550 rows and 20 columns.
data(recapSE1) recapSE1 data(recapSE2) recapSE2
data(recapSE1) recapSE1 data(recapSE2) recapSE2
Package version
rWSBIM1322version()
rWSBIM1322version()
## check the package version that is currently installed rWSBIM1322version()
## check the package version that is currently installed rWSBIM1322version()
See scripts/randata.R
for how these data were generated.
tdata1
tdata1
An object of class matrix
(inherits from array
) with 100 rows and 6 columns.
data(tdata1) head(tdata1) data(tdata2) tdata2 data(tdata3) tdata3 data(tdata4) tdata4
data(tdata1) head(tdata1) data(tdata2) tdata2 data(tdata3) tdata3 data(tdata4) tdata4
A character vector with Uniprot identifiers.
data("up_selected")
data("up_selected")
data(up_selected) head(up_selected)
data(up_selected) head(up_selected)
See man/xy.R
for how these data were generated. xy
is scaled,
xy0
is the orginal data.
xy
xy
An object of class data.frame
with 20 rows and 2 columns.
data(xy) xy0 xy pca <- prcomp(xy) summary(pca) plot(pca) biplot(pca)
data(xy) xy0 xy pca <- prcomp(xy) summary(pca) plot(pca) biplot(pca)